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We perform direct numerical simulations (DNS) of homogeneous turbulence subject
to periodic shear — § = S, sin(wt), where w is the forcing frequency and S, is the
maximum shear. The lattice Boltzmann method (LBM) is employed in our simulations
and a periodic body force is introduced to produce the required shear. We find that
the turbulence behaviour is a strong function of the forcing frequency. There exists
a critical frequency — w., /S =~ 0.5 — at which the observed behaviour bifurcates.
At lower forcing frequencies (w < w,,.), turbulence is sustained and the kinetic energy
grows. At higher frequencies, the kinetic energy decays. It is shown that the phase
difference between the applied strain and the Reynolds stress decreases monotonically
from 7 in the constant shear case to m/2 in very high frequency shear cases. As a result,
the net turbulence production per cycle decreases with increasing frequency. In fact,
at w/Su.x =10, decaying isotropic turbulence results are recovered. The frequency-
dependence of anisotropy and Reynolds stress budget are also investigated in detail.
It is shown that inviscid rapid distortion theory (RDT) does not capture the observed
features: it predicts purely oscillatory behaviour at all forcing frequencies. Second
moment closure models do predict growth at low frequencies and decay at high
frequencies, but the critical frequency value is underestimated. The challenges posed
by this flow to turbulence closure modelling are identified.

1. Introduction

Over the last two decades, much progress has been made in understanding and
predicting turbulent flows. During this period, direct numerical simulations (DNS)
have played a crucial role, especially in providing insight into fundamental turbulence
processes (Moin & Mahesh 1998). However, much of this progress is restricted to
turbulent flows subject to steady forcing. There are numerous turbulent flows in
engineering and nature in which turbulence is subject to time-dependent (unsteady)
forcing, e.g. flows in turbines, internal combustion engines, and biological devices.
An important feature of unsteadily forced flows is the emergence of phase difference
between mean strain (rate) and Reynolds stress, which leads to significant changes in
the turbulence dynamics from the constant forcing case. There are many flow control
strategies attempting to take advantage of unsteady turbulence dynamics to modify
or control flows (Quadrid & Sibilla 2000).

Detailed investigations of turbulence subject to unsteady forcing are relatively
recent. Unsteady forcing implies a time-varying mean-velocity gradient which encom-
passes a very wide range of possibilities. Presumably, different types of unsteadiness
can have vastly different effects on turbulence. This renders a systematic study
of unsteadily forced turbulence difficult. However, some progress can be made by
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recognizing that any arbitrary unsteadiness in the mean velocity gradient can be
expressed as a combination of four elementary forms of variation: (i) temporal
changes in the eigenvalues of the mean strain rate tensor, with eigen-directions fixed;
(ii) rotation of the eigen-directions of the mean strain rate tensor, with eigenvalues
maintained constant; (iii) temporal changes of the mean vorticity-vector magnitude,
with the direction fixed; and, (iv) rotation of the mean vorticity-vector axis, with its
magnitude maintained constant. Our ultimate goal is to study, in isolation, the effects
of each type of unsteadiness on turbulence.

To accumulate a reliable knowledge base of these flows, we must revisit many of
the canonical flows and re-examine the turbulence features in the context of unsteady
forcing. An idealized flow which has contributed greatly to our current understanding
of steadily forced turbulence is the homogeneous shear flow. Examination of the
unsteady counterparts of this important flow will provide valuable insight into the
physics of many different practical turbulent flows. Two forms of unsteady homo-
geneous shear flow are currently under investigation in our group. The first is a
homogeneous periodic shear flow which is the subject of this paper. The mean
velocity gradient of this flow is given by

aU;
8Xj

() = Spax Sin(w)8:18 . (1.1)

Here, and throughout the paper, we use the following notation: V, U and u represent
the total, mean and fluctuating velocity vectors. Thus, the mean-strain tensor has
fixed eigen-directions and temporally sinusoidal eigenvalues (elementary form (i) in
the above list). In our DNS (direct numerical simulation) investigation, the desired
velocity gradient is produced by introducing a body force which is a deterministic
function of space and time. This issue will be discussed in detail later. The second form
of unsteady homogeneous shear which is being investigated in a concurrent study is
a rotating shear flow. In this flow, the eigenvalues of the mean strain-rate tensor are
constant, but the eigen-directions rotate at a constant rate (elementary form (ii)). When
the rotation rate is zero, the forcing reduces to a simple homogeneous shear. Again,
the required time-varying velocity field is produced using a body force. The results of
turbulence subject to rotating shear is reported in Girimaji, O’Neil & Yu (2006).

1.1. Relevant literature

Some of the classical experiments of steady homogeneous shear flow include the works
of Rose (1966), Champagne, Harris & Corrsin (1970), Tavoularis & Corrsin (1981a, b),
and De Souza, Nguyen & Tavoularis (1995). Tavoularis & Karnik (1989) claim that
such flow exhibits an asymptotic self-preserving structure, in which the dimensionless
Reynolds stress ratio and the production-to-dissipation ratio remain essentially
constant. At that asymptotic stage, the measured values of the anisotropy tensor
components b;; are: b;; =0.18 £0.04, b, =—0.114+0.02 and b, =—0.16 £ 0.01. The
anisotropy tensor is defined as b;; = (u;u;)/2k — 8;;/3. The applied mean shear,
turbulent kinetic energy, production and dissipation are represented by S =dU/dy, &,
P and e, respectively. Normalized shear is given by S* = Sk/e. The measured asympto-
tic production-to-dissipation ratio P /e is 1.47 + 0.06 and normalized shear is $* =5.6.
All these findings have directly contributed toward turbulence closure modelling
(Girimaji 2000, and works listed therein). For example, the asymptotic anisotropy
values are used in the calibration of the various coefficients in rapid pressure—strain
closure models. The asymptotic production-to-dissipation ratio is directly related to
a coefficient in the modelled dissipation evolution equation.
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Direct numerical simulations have been performed to study aspects of steady
homogeneous shear flows not easily accessible to experimental investigation. Rogers &
Moin (1987) examined the structure of vorticity in homogeneous turbulent shear flows.
Lee, Kim & Moin (1990) compared the structure of turbulence subject to high shear
rate in homogeneous shear flow with that in turbulent channel flow, and found
that many dynamical features in the two flows are similar. Kida & Tanaka (1994)
investigated the regeneration cycle of the streamwise vortices in a homogeneous shear
flow. The small-scale structure of homogeneous shear flow has been found to share
many common features with those of other strain-dominated turbulent flows. Based
on the above observations, we suggest that the investigation of unsteadily forced
turbulence should start with homogeneous shear flows.

Rotating homogeneous shear flow shares some common features with the homo-
geneous turbulence subject to periodic shear (elementary form (i)) and rotating shear
(elementary form (ii)). When considered in the inertial frame, it is clear that the eigen-
directions of the applied shear rotate, and turbulence is subjected to time-dependent
forcing. Rotating homogeneous shear flow has been the subject of many theoretical
and computational studies (Speziale, Gatski & Giolla Mhuiris 1990; Speziale, Abid &
Blaisdell 1996; Sahli & Cambon 1997; Sahli, Cambon & Speziale 1997; Sahli 2002).
The major findings from these studies are: (a) for small rates of rotation (£2) relative
to shear S, turbulence grows in time, although slower than in the non-rotating shear
case; and, (b) for high rates of rotation, fluctuations become two-dimensional (as per
the Taylor-Proudman theorem) and turbulence decays. It is found that the observed
behaviour is well predicted by linear stability theory. Linear stability equations pre-
dict that turbulence can be sustained only for the range of parameter values 0 < |£2]|/
S <0.5. This range is very close to that observed in experiments and second-moment
closure model calculations.

Another interesting unsteady flow in which turbulence is subject to successive mean
compression and dilatation was investigated by Hadzic, Hanjalic & Laurence (2001).
It was found that a phase lag between Reynolds stress and mean strain developed
shortly after introduction of periodic forcing. At all forcing frequencies, turbulence
was found to decay at long times.

1.2. Objective and methodology

In this paper, our objective is to perform DNS of homogeneous flows subject to
periodic (sinusoidal) mean shear. The goal is to gain important insight into various
physical processes and evaluate the applicability of current turbulent closures. While
most DNS studies in the past have employed the Navier—Stokes equations (NS-DNS),
we will use the lattice Boltzmann method in our work (LBM-DNS).

The lattice Boltzmann method (LBM) is emerging as a promising alternative for
computing fluid dynamics problems (Succi 2001 ; Yu et al. 2003). Historically, the LBM
was developed from lattice gas automata (McNamara & Zanetti 1988). The theoretical
foundation of the LBM was established by McNamara & Zanetti (1988), Higuera &
Jimenez (1989), Koelman (1991), Chen, Chen & Matthaeus (1992), d’Humieres (1992)
and Qian, d’Humieres & Lallemand (1992). The LBM has been used mostly to
simulate different kinds of low-Reynolds-number flows. Direct numerical simulation
of turbulence using LBM is more recent. In previous works, we have established the
physical accuracy and computational advantages of using LBM-DNS and LBM-LES
in decaying isotropic turbulence in inertial and rotating frames (Yu, Girimaji & Luo
2005a, b). In Yu & Girimaji (2005), we demonstrate the capability of LBM-DNS
in steady homogeneous shear flow as well. At this stage, LBM is well validated for
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DNS of steadily forced turbulent flows. In this paper, we extend the LBM algorithm
developed in Yu & Girimaji (2005) to periodic homogeneous shear turbulent flow by
introducing an appropriate body force.

We address the following issues as a function of forcing frequency:

(a) Evolution of turbulence statistics such as kinetic energy, production, dissipation
and Reynolds stress anisotropy;

(b) Phase lag between applied mean strain and Reynolds stress;

(c) Budgets of Reynolds stress;

(d) Comparison of DNS results with rapid distortion theory (RDT) and second
moment closure models.

The reminder of this paper is organized as follows. A brief introduction to the lattice
Boltzmann method is given in §2. In § 3, we develop the methodology for generating
homogeneous turbulence field subject to time-dependent mean velocity gradients. We
present the DNS fluctuating velocity equations along with RDT and RANS closure
equations. Computational issues including the validation of the LBM procedure
used here are discussed in §4. In §5, the results of LBM-DNS of homogeneous
turbulence subjected to periodic shear are presented and the new physical features
are identified. In §6, we compare the DNS results with predictions from RDT and
two second-moment closure Reynolds-averaged Navier—Stokes (RANS) turbulence
models. Finally, we conclude with summary and discussion in § 7.

2. Lattice Boltzmann equation

As the use of lattice Boltzmann method for turbulence computations is still some-
what novel, we will provide a brief introduction. The reader is directed to the references
provided for detailed treatment of the various LBM issues.

The Boltzmann equation deals with the single particle distribution function
f(x, &, 1), where £ is the particle velocity, in phase space (x, &) at time z. One popular
kinetic model is the Boltzmann equation simplified with Bhatnagar—Gross—Krook
(BGK) approximation (Bhatnagar, Gross & Krook 1954):

of . — _1 (V)

VS = [ = 1. 1)
where f© is the equilibrium distribution function (the Maxwell-Boltzmann distribu-
tion function), and A is the relaxation time. The mass density p and momentum
density pV are the first (D + 1) hydrodynamic moments of the distribution function
f and f©, where D is the dimension of velocity space.

To solve f numerically, (2.1) can be discretized in the velocity space & using a finite
set of velocities {&,} without affecting the conserved hydrodynamic moments (He &
Luo 1997),

0f

. __1 — fleq)
S g, V= = [fo— 1) (22)

n (22), fu(x,t)=f(x,&,,t) and f9= fO(x &, t) are, respectively, the current
distribution function and the equilibrium distribution function of the ath discrete
velocity &,. Thus the LBM belongs in the class of discrete velocity methods (DVM)
for flow description.

In the LBM, physical space is discretized coherently with particle velocity space
to preserve the conservation laws and ensure the correct behaviour of macroscopic
variables. The lattice Boltzmann equation with the Bhatnagar—-Gross—Krook (BGK)
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approximation is

Fuli et 4+ 80) = fuloein 1) = = [flwn ) = 100 0], (23)

where T = 4/8t and 8x and 4t are the lattice constants and the time step, respectively.
With the velocity space discretized, the hydrodynamic moments of f and f? are
evaluated from the following quadrature formulae:

p= fa=D Sy (24)
PV = eufu=) eafy. (25)

Many choices of lattice model are available in literature. The 9-velocity (or 9-bit)
model on the two-dimensional square lattice, denoted as the D2Q9 model, has been
widely used for simulating two-dimensional flows. For three-dimensional flows, several
cubic lattice models, such as the 15-bit (D3Q15), 19-bit (D3Q19) and 27-bit (D3Q27)
models are available. For athermal fluids, the equilibrium distributions of the D2Q9,
D3Q15, D3Q19 and D3Q27 models are all of the form (Qian et al. 1992):

3 9 3

flt = pu, 1+?ea-V+ﬁ(ea-V)2—?V-V : (2.6)

where w, is a weighting factor and e, is a discrete velocity, ¢ =8x /8¢ is the lattice
speed. It can be shown that f°? is in fact a finite-term Taylor series expansion of
the Maxwellian £, This approximation of f© by the above f(¢¢) makes the method
valid only in the incompressible limit (|V|/c — 0). In the above models, the speed of
sound is ¢, =c/+/3 and the equation of state is that of an ideal gas p = pc2. The
viscosity of the fluid is

v = (1 —0.5)c?51. (2.7)
It should be noted that (2.3) is explicit, easy to implement, and straightforward
to parallelize. In this paper, we choose the 19-bit (D3Q19) model because of its
advantages in matters of stability and efficiency (Mei et al. 2000). The macroscopic
(continuum) mass and momentum balance dictated by this lattice Boltzmann equation
are exactly the same as those of Navier—Stokes equations in the incompressible limit.
In fact, in discussing the LBM macroscopic characteristics (behaviour pressure and
velocity fields), one can simply use the Navier—Stokes equations. In the remainder of
the paper, we will use Navier—Stokes terminology as most readers are likely to be
more familiar with its dynamics.

3. Homogeneous turbulence subject to periodic shear

There are important limitations to the types of time-varying mean velocity-gradient
fields that can be generated in conjunction with homogeneous turbulence (Cambon &
Scott 1999). However, many of these limitations can be overcome by introducing a
suitable body force F(x,t) in the momentum conservation equation. In this section,
we present the strategy for generating and sustaining homogeneous turbulence subject
to time-varying shear. We will then present the RANS and RDT equations for such
a flow.

As a prelude to the periodic shear discussion, we first briefly examine the constant
shear homogeneous turbulence generation. To facilitate comprehension, we develop
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our strategy in the Navier—Stokes context and, subsequently, translate it to the lattice
Boltzmann formulation. The Reynolds-averaged Navier—Stokes equation for the
mean-velocity gradient is:

DOU 0 U _ 0 dlww) _0UU, _ 9P 93U
at Ox; “oxe 0x;  oxc  0x; dx; Ox;  Ox;0x;  Oxpxg 0x;’

(3.1)

where P is the mean pressure. To sustain a given steady spatially-uniform mean-
velocity gradient in a homogeneous turbulent flow, the appropriate mean pressure
field must be applied. This pressure field must satisfy the equation:
3P U I,
dx;dx;  Ox; dxp

(3.2)

It is important to note that the left-hand side of (3.2) is a symmetric tensor and this
considerably restricts the types of steady mean velocity gradients (right-hand side
of the equation) that can be achieved with pressure field alone. Steady mean shear
(0U;/0x; = 86;18;2) is permitted and the pressure field required to generate it is:

3P U U
8)6,'8)6]‘ - 8Xj E)xk

= 528118281182 = S?8128,28;1 = 0. (3.3)

Thus, to sustain the initial homogeneous mean shear, a constant mean pressure
gradient field is sufficient.

As mentioned earlier, to achieve complex time-varying mean flows, additional body
force, F(x,t), is required. For this purpose we will consider a body force that is
a function of space and time, but completely deterministic: F does not contain a
fluctuating part. Now the mean and fluctuating velocity equations can be written as:

an 8Ul 8<M,'Mk> 8?
=— F;, 34
ar T Uk dxp + dxp dx; + (34)
au,- Bu,- 0 Bp/ 8U, 8214,'
U _— i —_— i == — - . 35
ar T Uk T i i) = = e e (3:5)
The Poisson equation for mean and fluctuating pressure (p’) fields are:
9P U, aU 3 u;
LA AL . i) (3.6)
0X;0X) Oxx Ox; 0X; 00Xy
’p’ :_2%%_%%_{_8(“’”0' (3.7)
00X, 00Xy 0xy 0x; Oxy 0x; 0X; 00Xy

It is clear that the fluctuating velocity and pressure field equations are unaffected by
the forcing, provided the force is purely deterministic. Now the mean velocity-gradient
evolution equation can be written as

DU, D OU 9§ ((wu) 8U U, 2P 3 AU,
9t dx; | “oxiox;  0x

+F. (38)

8Xj o E 8)Ck B 8)6,'8)(]‘ Y akak axj

If the Reynolds stress and the mean velocity gradient are uniform in space, the
equation reduces to
U AL IU; 3P
3t dx;  dx; dxp  Ax;dx;

+F ;. (3.9)
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To sustain a spatially-constant velocity gradient, F;; and 8?P/(dx;dx;) must be
uniform in space.

In summary, to achieve a time-varying mean velocity gradient acting on homo-
geneous turbulence, a body force with the following properties must be included:

(a) A deterministic force with no fluctuations;

(b) A force that is a linear function of space with the temporal dependence dictated
by the time-variation of the desired mean velocity gradient;

(c) A force that satisfies equations (3.6) and (3.9).

The time-dependent mean velocity gradient of interest here is periodic shear of the
type:

aU; :
9x, () = Spax Sln(Q)t)(Sil(SjL (3.10)

J

The maximum value of the periodic shear is S, and its numerical value in our
computations is S, =0.0006875. It is easy to establish that the corresponding
pressure field must satisfy

g aU; aU,
=————+ F = Fiy. 3.11
02X, 0} 0xp 0x; + Pl kK ( )

To accomplish the required mean velocity gradient, without violating the homogeneity
of the fluctuating field, the body force must satisfy equations (3.9) and (3.11). Now
let us consider a body force of the type

F = a)Smax(y - yre/') COS(a)t)i, (312)

where i is the unit vector along the x-direction. Also, (x, y) corresponds to (xi, x3)
directions and y,s is a reference point which we take to be at the centre of the
computational domain. We will now demonstrate that this body force produces
the required time-varying mean velocity gradient. Substitution of this body force in
equation (3.11) yields
a’P

Bxkaxk
Thus the pressure gradient in this case is uniform in space, as in the constant shear
case. For such a pressure field, we will have

90U 0*P
dt dx;  Ax;0x;

= Fx =0. (3.13)

=+ F',] = E] = wSmax Cos(a)t)S,-]sz. (314)

The resulting mean velocity gradient can be easily shown to be identical to the required
form given in equation (3.10). This confirms that the applied body force results
in the desired time-dependent mean velocity gradient, while maintaining the fluctuat-
ing field statistically homogeneous in space. It is important to note that the temporal
variation is not due to the pressure field. Finally, the mean velocity field in our com-
putation is

U(y, 1) = Spax(y — Yrep) sin(wt). (3.15)
The next step is to introduce the requisite body force in the LBM equation. The

effect of body force can be achieved by the inclusion of an extra term in (2.3) (Guo,
Zheng & Shi 2002):

fulXi 4 €488, 1 4 81) — fu(xi, 1) = —% [fulxi 1) = f19(x;,1)] + 8tG, (3.16)
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where

1 e,—V e,V
=(1—— —_—t — -F. 3.17
GC( ( 2T>wa|: C? + C? eDt ( )

Equation (3.16) is the one which we solved in our numerical simulation.
3.1. Reynolds-averaged Navier—Stokes equation

For any arbitrary incompressible turbulent flow, the Reynolds-stress evolution
equation can be written as
D 9

D7[<uiuj>+87kakij=Pi'+Rij_8ijv (318)
where

D d a

— =—4+U;,—

Dt ot + I ij
is the mean substantial derivative and the turbulent transport of the Reynolds stress
(Ty;;) can be decomposed as

(3.19)

Ty = T80 + 1) + T3,

In the above,

oQuius) — ip)
8x ’ kij
k

1

" 1
Tk(ij) = (uiujuy), Tk(il}) =V P <uip/>8jk + E(“jl’/)fsik-

Production, pressure redistribution and dissipation are, respectively:

aU; aU;
P = ) —L — -, 3.20
J <M uk> axk < J k> axk ( )
p' [ ou;  Ou;
R:.=—{(*= , 3.21
! <p(8x.i+8xi>> (32D
ou; ou;
=2 L1, 3.22
¢ / v <8xk 8xk > ( )
In homogeneous turbulence, the evolution equation simplifies to
0
E<Miuj>=Pij+Rij_8ij- (323)
For homogeneous shear flow, these equations can be written in the componential
form as:
d 8U1 p/ 8”1 81/!1 81/!1
— =— — —(2=—— ) =2 { —— 3.24
g ) = ) < p ox; > Y <3xk axk>’ (3:24)
0 p/ 8u2 81/!2 E)uz
— =—(2=—)—2v({ ——), 3.25
or \au2) < P 8x2> Y <8xk Bxk> (3.25)
0 p/ 81/!3 8u3 8u3
— =—(2=—)—2v( ——), 3.26
ot (us3) < P 8x3> Y <8xk 8xk> (3.26)
9 U, p (ou;  Oup ou; 0uy
— =— — (= —+—])—=2v({——). 3.27
8t<u1u2> (uzu2) 0x, < P <8x2 + ax; >> Y <8xk 8xk> (3.27)

It is important to note that the body force does not enter the Reynolds-stress equa-
tion as it acts only on the mean flow. Thus, the form of these RANS equations is
independent of whether the shear is steady or time-varying.
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3.2. RDT equations for the fluctuating velocity field

One of the objectives of our work is to compare the DNS results with inviscid RDT
(rapid distortion theory) and RANS model calculations. A detailed description of
RDT can be found in standard text-books (Pope 2000). In a variety of flows, including
rotating homogeneous shear and elliptic streamline flows, RDT has proved to be very
accurate at capturing important characteristics of turbulence behaviour observed in
experimental and numerical experiments. Rapid distortion theory entails the analysis
of the linearized Navier—Stokes equations and, hence, excludes nonlinear effects.
Comparison of RDT and DNS results will provide clear insight into the roles of
linear and nonlinear turbulence dynamics in this flow.

At high Reynolds numbers, the linear effects of production and pressure—strain cor-
relation are most prominent at the large scales, while the viscous action occurs in
the small scales of motion. The two effects are separated by the inertial scales of
motion in which the nonlinear cascading mechanism is of prime importance. Thus,
the cascade due to the nonlinear effects completely changes the way in which viscous
effects manifest on turbulence. In a typical high-Reynolds-number flow, the linear
turbulence physics is completely unaffected by viscous action. Therefore, we will
perform inviscid RDT and then will conjecture on the effect of viscosity.

The governing equations at the inviscid RDT limit are obtained by omitting non-
linear and viscous terms in the fluctuating velocity (3.5) and pressure (3.6) equations
leading to:

Du; ap’ aU;

— = — —u s

Dt 0X; k Xy (3 28)
0 i |

Bxkaxk Bxk 8)6.]* ’

It is important to note that the form of these fluctuating equations is completely
unaffected by the forcing or the time-variations in the mean velocity gradients.
Therefore, to perform RDT simulations of the present flow field, the standard RDT
approach can be used.

In the standard approach, the RDT governing equations are solved in Fourier space
(wavenumber k) in a coordinate frame that is moving with the mean velocity field.
For this reason, the wavenumber of each fluctuating mode itself changes in time.
Because of the linearity of the RDT equations, the amplitudes of velocity (z(k, 1))
and pressure (p(k,t)) of each mode evolve independently of those of others. The
evolution equations for the wavenumber k(¢) and velocity amplitude #(z) of each
mode are given by (Townsend 1976):

dKl _ BUJ

@& (1), (3.29)
dI/At i ~ 8U1 KjK]
i, 20 (¢)< 250 ) (330)

It can be easily seen that the velocity amplitude and wavenumber of each mode
satisfy the incompressibility condition:

Ift,‘l(,‘ =0. (331)

Equations (3.29)-(3.30) form the basis of our RDT calculations.
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The RDT Reynolds stress equation is obtained by summing correlations over all
fluctuating modes:

a aU; aU; aU,

a( iuj) = _<”j”k>87xk - <”i”k>87xkj + 287)61((Mkjil + Migji)- (3.32)
In (3.32), M, is a fourth-order tensor defined by
nen KKK
M = uiuj%, (3.33)

where * is the complex conjugate. The RDT (rapid) pressure-rate-of-strain tensor
Rfj’.) can be identified as

14/

R = 22 (Mgir + M), (3:34)

: Bxk
Finally, the RDT Reynolds-stress evolution, (3.32), can be rewritten in the simple
form

9 r

2 wius) = Py + R, (3.35)
Therefore, in RDT, Reynolds-stress evolution is governed entirely by the linear
processes of production and rapid pressure—strain correlation. Remember that the
mean velocity-gradient can be time-varying in all the above equations.

4. Computational methodology validation

In Navier-Stokes DNS of homogeneous shear turbulence, the computational
domain is typically a cube with periodic boundary conditions imposed in all directions
for the fluctuating fields. The computation is performed on a grid moving with the
mean flow (the so-called Rogallo coordinates). The shear deforms this grid and
remeshing must be frequently performed (Rogallo 1981). The mean velocity gradient
appears as a forcing term in the fluctuation equation and can be simply specified to
be a constant.

In laboratory experiments, flows are contained within walls and homogeneous
turbulence measurements are made in the core portion of a bounded flow, before
the wall influences penetrate the region of interest. In our LBM-DNS, we adopt a
computational domain which is similar to the one in experiments. The computational
domain is bounded in flow-normal direction (y-direction in figure 1) by frictionless
walls and periodic boundary conditions are employed in streamwise (x) and spanwise
(z) directions. This computational domain is exactly the same as the one employed
by Schumacher & Eckhardt (2000) in their Navier—Stokes based DNS. In the y-
direction, the presence of the walls and the resulting pressure-blockage and viscous
effects will lead to inhomogeneity. The inhomogeneous effects will start at the wall
and propagate toward the core of the flow. This will also be the case in any laboratory
experiment of homogeneous flows. As in experiments, we will gather statistics in the
core region of the flow before the wall effects compromise the homogeneity of the
turbulence field. The grid resolution is 128* and to avoid wall effects, the statistics
are gathered only in the core-region of 128 x 64 x 128 as shown in figure 1. This
arrangement is a variant of the Couette-flow boundary conditions employed in our
previous work with constant-shear forcing (Yu & Girimaji 2005). The new set-up is
more readily amenable to periodic forcing. In this section, we seek to achieve two
objectives: to confirm homogeneity in the constant-shear case; and, to demonstrate
that homogeneity is preserved in the periodic shear case as well.
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128

128

FIGure 1. Computational domain. The statistics are obtained in the core region of the
computational domain which is 128 x 64 x 128.

4.1. Validation in constant shear case

We first establish the initial flow field: an isotropic fluctuating velocity field superposed
on a constant shear mean velocity field. Three stages are involved in establishing this
flow field. First, a random isotropic fluctuating field is generated in the computational
domain using standard techniques (Yu et al. 2005). Next, we let this turbulence decay
for about one eddy turnover time to achieve close consistency with the initial spectrum
of case RR128 by Rogers (1986). Finally, the mean velocity (S=094U/dy) is added
to the fluctuating velocity. In our simulations, the initial Taylor Reynolds number is
Re; =33 and initial non-dimensional shear is S* =3.3. In our computational set-up,
as clearly demonstrated in the previous section, no external forcing is necessary to
sustain the initially prescribed constant shear in regions away from the wall.

In LBM-DNS simulations of the total velocity field, it is necessary to ensure that
the uniformity of shear and homogeneity of the fluctuating field are maintained
throughout the computations. We plot in figure 2 the mean velocity profile U(y)/ Uax
at the final stage of computation (St=12) and the turbulent Kkinetic energy
distributions k(y)/k at the initial and final stages of computation. In the figure, U(y) is
the average fluid velocity on a given (x, z)-plane and U, is the initial maximum mean
velocity in the domain. The linearity of the plane-averaged velocity clearly confirms
the uniform shear is sustained throughout the computation. In the kinetic energy plot,
k(y) is the plane-averaged kinetic energy and k is the volume-averaged value. Initially,
this value is nearly constant at all y-planes, confirming the homogeneity of the initial
fluctuating field. At the final time-step, the plane-averaged kinetic energy is constant
in the core of the flow, but drops off rapidly close to the walls. Clearly, the wall effects
are significant on kinetic energy, but have not penetrated the core area (32 <y <96)
from which the statistics are calculated. Based on these results, we confirm that the
required flow conditions are satisfied in our computations. Importantly, turbulence
attains the all-important structural-stationarity state long before the wall effects are
felt in the core portion of the domain.

It should be reiterated here that the frictionless (slip but no penetration) wall
condition is employed in our computation. It was found that the no-slip boundary
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FIGURE 2. The profile of mean velocity at St =12 and the distribution of k(y) at the initial stage
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condition leads to a more rapid penetration of the wall effects into the core portion
of the flow.

As the final step of our constant-shear validation study, we compare the computed
statistics against benchmark data of Tavoularis & Corrsin (1981a, b), Rogers (1986)
and Jacobitz, Sarkar & Van Atta (1997). In figure 3, the time evolution (in normalized
St units) of normal Reynolds stresses computed with LBM-DNS is compared against
the NS-DNS data of Rogers (1986). Also shown are two near-asymptotic values
from the experiments of Tavoularis & Corrsin (1981a). It is clear that LBM-DNS
captures not only the asymptotic state, but also the transient evolution very well. In
figure 4, the anisotropy shear component (by;) evolution obtained from LBM-DNS is
compared against the data from Jacobitz et al. (1997). The transient and asymptotic
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FIGURE 4. The results of bj; obtained from —, DNS using LBM and ---, Navier—Stokes
equations by Jacobitz, Sarkar & Van Atta (1997) with initial values of Re; =44.72 and
Sk/e=2.0.
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FIGURE 5. The profiles of U(y) and k(y) at Syt =34.55, 37.70, and 40.81 for w/Spax =0.5.
Ideal vs. computed.

behaviour are well captured by LBM-DNS. We conclude that LBM, with the current
computational set-up, has the capability for extension to more complex flows.

4.2. Validation in periodic shear case

For achieving periodic shear, the requisite forcing, discussed in §3, is included and
equation (3.16) is solved starting from an isotropic initial turbulent field. For a given
value of @ (w/Sn. =0.50), we examine in detail the homogeneity of the turbulence
field.

Streamwise (x) and spanwise (z) homogeneity are guaranteed by enforcing period
boundary conditions in those directions. We will again examine the dependence on
plane-averaged statistics (moments averaged over (x, z)-planes) as a function of the
wall-normal distance y.

Figure 5 shows the mean velocity profiles U(y)/ U, and the turbulent kinetic
energy distributions k(y)/ko at Syt =34.55, 37.70 and 40.81. At the times shown,
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FIGURE 7. Planar-averaged pressure—strain correlations along the y-direction at S,,,t = 34.55.

the desired shear is at its negative maximum, zero and positive maximum states,
respectively. We can see that computed mean velocity in figure 5 agrees with desired
linear profiles very well even in regions near the lower and upper walls. However,
the walls have relatively larger effects on the turbulence field, as shown in the same
figure. In the region of interest (32<y<96), homogeneity is well preserved. We
probe further and examine y-dependence of all of the turbulence moments in the
Reynolds-stress evolution equation. For the case of homogeneous (steady or unsteady)
shear turbulence these equations reduce to a balance between production, dissipation
and pressure—strain correlation (see (3.24)—(3.27)). The production involves the mean
velocity gradients and Reynolds stresses. To prove homogeneity conclusively, we
then need to show that the various components of Reynolds stress, dissipation and
pressure—strain correlation are independent of y.

The plane-averaged components of Reynolds stresses, pressure—strain correlation
and dissipation are plotted in the figures 6, 7 and 8 at S, =34.75. The Reynolds
stresses are normalized by the initial kinetic energy k¢, and the pressure—strain
correlation and dissipation are normalized by magnitude of dissipation tensor ¢;
at Sput =34.75. Overall, homogeneity is reasonably well preserved, even with the
high-order moments in the core area. The pressure-strain exhibits slightly larger
excursions from the mean than the other terms. This variation can be attributed to
statistical uncertainty, rather than violation of homogeneity, as there is no clear trend
in y-dependence. It should also be noted that LBM is a compressible scheme, in
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FiGURE 8. Planar-averaged components of the dissipation tensor along the y-direction at
Simaxt = 34.55.

which speed of sound is finite and pressure is determined from the equation of state.
Thus, the pressure oscillations due to presence of the wall can be much more localized
than in an incompressible solver. In our computations, we use both single-relaxation
time (SRT) and multi-relaxation time (MRT) LBM models. The introduction to the
SRT model is given in § 2. For a discussion of the MRT model, see d’Humieéres et al.
(2002). For lower-order statistics, MRT and SRT computations yielded comparable
results. For higher-order moments, MRT was found to be superior. All the results
presented in this sub-section are from MRT computations.

As the final confirmation of homogeneity, we also compute the turbulent transport
terms T;;. It is found that the transport is an order of magnitude smaller than
pressure-correlation terms. Thus it can be concluded that the turbulence field is
indeed homogeneous as desired.

5. DNS results

The effects of six different forcing frequencies on turbulence evolution are studied:
®/Snax =0.125, 0.25, 0.50, 0.75, 1.0 and 10. In all the cases, the initial turbulence field
is isotropic and prepared as described in §4 and allowed to evolve according to (3.16).
The various statistical moments are computed as a function of time. The results are
sorted into several different categories: kinetic energy and dissipation; production;
shear anisotropy; normal anisotropy; Reynolds stress budget; and limiting high-
frequency behaviour. Each category is examined individually and in relation with
other categories.

5.1. Evolution of k and ¢

In all the cases studied, turbulence decays initially as the production is nearly zero
(due to Reynolds stress isotropy) and dissipation is comparatively large. After the
initial decay, subsequent evolution of k is different for different frequencies as shown
in figure 9. In w/S,,x =0.125 and 0.25 cases, k grows rapidly after the initial period
of decay. The growth, however, is not monotonic and cyclic variations from the mean
trend are very much in evidence. In the case of w/S =0.5, the initial decay period is
followed by a long period of purely periodic behaviour. Beyond S, = 25, the kinetic
energy shows signs of very slow growth. In w/S,,.,.=0.75 and 1.0 cases, k appears
to decay with each cycle of applied strain. It is clear that two distinct turbulence
responses are possible depending on the frequency of forcing. At low shear frequencies,
turbulence grows at long times, although not necessarily monotonically. At high shear
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FiGUrRe 10. Evolution of k and ¢ in the w/S;.x =0.5 case.

frequencies, turbulence decays. The switch from turbulence decay to growth occurs
at a frequency of approximately w/S,.x =0.5. It is likely that at some normalized
frequency close to 0.5, turbulence neither decays or grows. It is, however, difficult to
precisely pin-point this value frequency for which the turbulence level remains close
to its initial condition. While the turbulence dynamics in the growth cases are likely
to be similar to the steady forcing case, the physics of the decaying cases require
further investigation.

Two decaying cases (@/Sy.x =0.5 and 1.0) are studied in more detail in figures 10
and 11. In these figures, the cycles of k variation are compared to those of S-variation
and the behaviour of dissipation is also examined. Clearly, the frequency of variation
k is twice that of shear. We identify five points in time (A, B, C, D and E) in one period
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FiGure 11. Evolution of k and ¢ in the w/Spq = 1.0 case.

(Tp) of shear cycle. Points A, C and E correspond to consecutive zero-crossing times
of S and points B and D correspond the consecutive minima times in k variation.
In the w/S,.x = 1.0 case, consecutive k peaks have progressively smaller magnitudes
indicating decay. In the w/S,..=0.5 case, consecutive peaks in the intermediate
period of evolution are nearly identical.

In all the cases considered, the evolution cycles of k and e are in phase. This
observation has important modelling implications. The current closure strategy of
modelling production of dissipations in terms of production of kinetic energy appears
to be valid for time-dependent forcing as well, at least at these low Reynolds numbers.

5.2. Time dependence of P/e
A simple examination of the kinetic energy equation in homogeneous flows

dk
T P—e¢, (5.1)
reveals that k-evolution is completely dictated by the difference between production
and dissipation. In order to understand the observed evolution of k, we investigate
the behaviour of the P/e ratio. This ratio must exceed unity for turbulence to grow.
Figures 12 and 13 show the evolution of P/e. The evolution is generally oscillatory
with periods of negative production. Negative production is rarely seen in turbulence
subject to constant forcing, but may be important in many practical flows. Over the
first half-cycle of forcing, strain and production are in phase and their frequencies
appear to be the same. However, a phase difference soon develops and the frequency
of the ratio (P/e) quickly becomes twice that of the applied strain, as can be seen
from monitoring the five reference points A, B, C, D and E (defined in figures 10
and 11). At all these points, production goes to zero. The zeros at A, C and E
are due to the strain-rate going to zero. The zeros at B and D, as will be seen
soon, are due to vanishing Reynolds stress component (uu,). The frequency of the
production cycle drives the kinetic energy cycle. Thus, the kinetic energy cycle is
also twice that of the applied strain rate as seen previously. The cycle-averaged ratio
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FIGURE 13. Evolution of production over dissipation ratio (P/¢) in the w/S,.x = 1.0 case.

grows gradually beyond unity in the low-frequency cases: w/S,. <0.5. At higher
frequencies, the cycle-averaged ratio lingers around zero (e.g. the w/S,.. =1 case
shown in figure 13). Thus, the observed k& behaviour can be completely explained in
terms of the asymptotic trends of mean production-to-dissipation ratio.

5.3. Evolution of by,

To gain further insight into the behaviour of P/e, we next examine the evolution
of shear anisotropy bj,, which, in conjunction with S(¢), determines production. In
constant shear turbulence, b, and S are of opposite signs.
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FIGURE 14. Evolution of by, in the w/Syq =0.5 case.

The evolution of anisotropy component by, in the w/S,..x =0.5 case is shown in
figure 14. The time variation of shear is also given in the figure. For the first quarter
of the cycle, by, is in phase with S and evolution is as expected. As the value of the
applied strain begins to diminish after peaking, a phase lag develops. When the strain
goes to zero at the half-cycle mark, the stress is clearly non-zero highlighting the
hysteresis effect. For a substantial portion of the third quarter of the first cycle, stress
and strain are of the same sign, implying that the production is now negative. Toward
the end of the third quarter, the stress passes through zero and production becomes
positive again. Throughout the fourth quarter of the first cycle, the stress and strain
are of opposite signs. At the end of the first cycle, the stress does not return to zero.
The phase-lag between stress and strain continues to grow for another cycle of applied
strain. By the end of the second cycle, stress and strain lock into a constant phase
difference and evolve at the same frequency. In this asymptotic state, the dynamics is
again examined using the reference points A, B, C, D and E. We divide the A—E time
period into four intervals: AB, BC, CD and DE, as shown in figure 14. Just before
time A, the shear is negative, by, is positive, and production is positive. In the period
AB, shear becomes positive while by, still maintains positive values. In this period,
production is negative as shown in figure 12. The negative production is also reflected
in the rapid fall of k during the same period in figure 10. It can be seen in figure 14
that shear and by, are relatively small in period AB hence the negative production
is relatively small in magnitude. After time B, production returns to positive values
until time C. As seen in figure 14, concurrence of large shear and by, values produces
large positive production during period BC. During period CD and DE, we see the
same kind of production behaviour as in periods AB and BC.

Figure 15 shows the evolution of by, for the w/S,.x=1.0 case. The differences
between the two cases are clearly evident. In w/S,... = 1.0 case, by, is not initially
symmetric about zero with the negative values being much larger than positive values.
This is caused by the initial sign of the applied shear. In our simulation, the initial
shear is positive leading to large initial negative values of by, in the first half of the
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FiGURE 15. Evolution of b5 in the w/Spqx = 1.0 case.

first cycle. At the second half of first cycle, the shear is negative and b, is changing
to positive values to keep in pace with the negative shear. However, before by, can
reach its full potential magnitude on the positive side, the first cycle rapidly comes
to an end and the applied shear is positive again. Thus, the positive excursions of by,
are not as large initially as the negative excursions. With the passage of time, the bias
toward negative values decreases as the effect of the initial sign of applied shear fades
and the oscillations become more symmetric. Calculations with initial negative shear
show the opposite initial bias, but do not change the observed asymptotic behaviour
of the evolution of kinetic energy, production or dissipation.

The difference between the low- and high-frequency cases at long times is more
important. Examining the time period A-E in the two cases, it can be seen that in
the w/Sux = 1.0 case, period CD is much longer and period DE is much shorter than
they are in the w/S,.x =0.5 case. This generates a large negative production during
time CD and small positive production during time DE in the w/S,..=1.0 case.
Overall, the net production during a cycle can be judged by the lengths of AB+ CD
and BC+ DE which correspond to the times when production has negative and
positive values, respectively. If BC 4+ DE is larger than AB + CD, net production will
be positive. Otherwise, the cycle average of production will be negative. As by and S
vary periodically, these lengths can be characterized by a single parameter: asymptotic
phase lag (¢) between S and by,. If ©/2 < ¢ < wt, we will have (BC + DE) > (AB 4 CD),
and the net production will be positive. If, on the other hand, 0 < ¢ < n/2, we will
have (BC+ DE) <(AB+ CD), and the net production will be negative. If ¢ =m/2,
then (BC+ DE)=(AB+ CD), resulting in no net production in a cycle of applied
strain. For the constant shear case, considering a constant shear as a pulse wave with
infinite period, we have ¢ =m. Thus, the production will always be positive. In our
computations, the phase difference between stress and strain vary initially, but lock
into a constant value at latter times. The dependence of the lock-in phase-lag as a
function of the applied frequency is shown in figure 16. It is seen that phase lag goes
from nearly © in the very low-frequency case to about /2 in high-frequency cases.
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Thus, the net production decreases with increasing frequency of forcing. The value
of ¢ does not fall below /2, implying that net production is always non-negative.
Thus, the net energy transfer in each cycle is from the mean to the fluctuating field,
except at very high frequencies at which the transfer goes to zero.

In order to sustain turbulence, the production must not only be positive, but must
also exceed dissipation. From our computations, it appears that for w/S,... > 0.5,
net cycle production is smaller than net cycle dissipation. We identify the critical
frequency as w. =0.5S,,.x, beyond which turbulence cannot be sustained. At higher
frequencies, dissipation rate exceeds the rate at which energy is transferred from mean
to fluctuating field.

5.4. Normal anisotropy

We now turn our attention to the normal components of Reynolds stress tensor.
In homogeneous flows, these components play an important role in determining the
secondary flow structures of the mean velocity field. The details of the evolution of
the diagonal anisotropy components in w/S,.,x=0.5, 0.65 and 1.0 cases are given
in figures 17, 18 and 19. The major observations and their implications are now
summarized.

The frequency of all normal (or diagonal) anisotropies is the same as that of
kinetic energy and twice that of the applied shear or off-diagonal (by,) anisotropy.
This is to be expected as the frequency of kinetic energy is also twice that of shear
due to the influence of production. That the diagonal Reynolds stress component
should have twice the frequency off-diagonal component can also be understood
from a second point of view. Considering one cycle of the evolution of (uu,), we can
expect (ujuy) and (upus), which are always positive, to attain their maximum values
during the maximum positive or maximum negative value of (uju,). The diagonal
Reynolds stress will attain their minimum value when (uu,) crosses zero. Thus,
in the time that it takes the off-diagonal component to complete a half-cycle from
maximum to minimum through zero, the diagonal components complete a full cycle.



138 D. Yu and S. S. Girimaji

0.2 [ A ’ \ 7’
=T | \ /x N\ ) \ /A A / \ /ﬂ:
B \ Vool Vo v \ ]
| [ \ / g \ / \ ) . \ f \/ - 2
- | \ / \ \/ \, o > i
0.1F ¢ J o ]
A ~ N 1
’r//h\ SN SN " ]
IV /N ) \ SN i
i \ / / / .
by OF / 3 0 S
b22 : e —: -1 Smax
-0.1 E
i {2
02F - - - by 43
- by ]
: T S/Smax ] 4
70.3 -\\ Ll l Ll Ll l Ll \l\ Ll \l\ L \l\ L \l\ Ll l\ Ll l Ll Ll l Ll \7
0 10 20 30 40 50

S

max

t

FiGURE 17. Evolution of by; and by, in the w/Syq =0.5 case.
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FiGgure 18. Evolution of b;; and by, in the w/Spu =0.65 case.

The difference in frequency between the applied strain and diagonal stresses also has
important modelling implications. Approximations which imply that stress and strain
have the same frequency will be invalid.

In the kinetic energy growth cases, the asymptotic cycle-mean anisotropy values
are non-zero. For example, in the case of w/S,.x =0.5, the asymptotic cycle-mean
values of by; and by, are about 0.15 and —0.1, respectively. In general, at all forcing
frequencies, component by; oscillates about a positive mean value and by, about
a negative value. The magnitude of the cycle-mean values of diagonal anisotropies
decrease with increasing frequency. Thus, with increasing frequency, the diagonal



Direct numerical simulations of homogeneous turbulence subject to periodic shear 139

_ a7
0.1F ]
5 /\ - == -by ]
i '\ by -6
o e SIS ]
[ | 5
P ," ]
i | ]
L

S
™
>
S
w
[95]

T T =T T UF
T~
s
2
o
>
<
-
—
-
~

N SN R

)
—
o
)
S
w
S
N
S
W
S

max’

FiGURE 19. Evolution of by; and by, in the w/Syqx = 1.0 case.

stresses tend closer toward the isotropic state. In all the decay cases, normal anisotropy
tends to zero asymptotically, even if it develops non-zero values during the first cycle
of shear. Thus, the decay cases evolve asymptotically to isotropic turbulence.

5.5. Budget of Reynolds stress

Reynolds-stress budgets offer more detailed insights into the physics of turbulence
processes and are very important for high-order moment closure model development.
We will now investigate the budgets of the various Reynolds stress components in
the w/Syq. =1.0 case. Although the computations are performed with the lattice
Boltzmann equation, the budgets will be discussed in the context of the Navier—
Stokes equations. (The Reynolds stress budget equations are given in § 3.) Following
Pope (2000), production, pressure—strain correlation and dissipation are represented
by P;j, R;; and &;;. Wherever possible, these budgets will be put in perspective with
the budgets in constant shear homogeneous turbulence (Rogers 1986).

First and foremost, we must ensure that the numerical data is of high enough nu-
merical accuracy that the various high-order derivatives and moments in the budgets
can be computed with confidence. This is particularly important as the current
computations employ a novel LBM approach rather than the tried and tested
Navier—Stokes schemes. Figure 20 shows the comparison of the time derivative
of Reynolds-stress (u;u;) computed from two independent means. One computation
comes from summing the terms on the right-hand side of (3.24), each of which is first
calculated independently. The second estimate of the time-derivative comes from the
finite-difference operation on Reynolds-stress:

dlugu;)  (wju (4 de)) — (wu(r —dr))
dt 268t :

The results from two different computations are indistinguishable. Further tests were
performed to ensure the accuracy of other budget-term calculations (figures not
shown). The results clearly indicate that all terms in the Reynolds-stress budget
equation are adequately accurate.
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Figure 21 shows different terms in the budget of (uu,) evolution (equation (3.27)).
The magnitudes of the various terms diminish with time as k decays from its initial
value. As is to be expected in the case of off-diagonal stress, dissipation is quite
small at all times. The pressure—strain distribution always counters production and
the difference between the two drives the evolution. This balance is very similar to
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FIGURE 22. Early-time variation of the (uju;) budget in the w/S,, = 1.0 case.
Key as in figure 21.

that seen in the constant shear case (Rogers 1986), with the exception that production
and pressure—strain distribution are now cyclic.

The budget of (uju;) evolution is shown in figure 22. As in the case of constant
shear, dissipation dominates the very early evolution (S,,..¢ < 1) as the Reynolds-stress
value falls rapidly. Although zero initially, production becomes the most dominant
term soon (St > 1). The peak value of normalized production in the time-varying
and constant shear cases occur at the same normalized time: S,,,.f=2. Pressure—
strain redistribution almost always counters the effect of production, but there are
rare instances when both the processes are of the same sign. It remains to be seen
whether the current pressure—strain redistribution closures can capture this behaviour
as most models assume that redistribution always counteracts production. At the
intermediate stages (1 < Syt < 10), the difference between production and the sum
of dissipation and pressure—strain redistribution drives the evolution. At later stages,
dissipation becomes negligible (in this decaying case).

The time dependence of budgets of (u,us) and (usus3) are quite similar and the latter
budget is shown in figure 23. For both components, production is absent. Dissipation
dominates the initial time (S,,.<¢ < 3) development, but quickly goes to zero thereafter.
The later development is mainly due to pressure—strain redistribution. The production
of (uyuy) is the only source of kinetic energy in this flow. We see that the magnitudes
of production, the dissipation and redistribution decrease with time. The increase of
the magnitude of P/e in figure 13 is caused by the faster decrease of ¢, rather than
the increase of P.

Overall, it is clear that pressure redistribution plays a key role in determining the
evolution of various normal components. Calculations were performed to confirm
that the trace of the pressure—strain redistribution was indeed close to zero. Analysis
of the three components reveals that Rj; and R»; are nearly in phase, while the phase
of Rs; is shifted by nearly m. This means that energy is removed from (u;u;) and
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FIGURE 23. Time variation of the (usu3) budget in the w/Sy. = 1.0 case. Key as in figure 21.

(uaus) and added to (usu3). This is different from what is observed in constant shear
homogeneous flow.

5.6. Limiting high-frequency behaviour

As mentioned in §1, the present flow shares some similarities with homogeneous
shear flow in a rotating reference frame. For example, in both cases, turbulence grows
when the frequency (of rotation or periodic variation) is small and decays when the
frequency is large. However, there are very significant differences in the turbulence
dynamics in the two cases. In the case of homogeneous shear flow in a rotating
reference frame, turbulence tends to a two-componential limit at large rotation
rates in keeping with the Taylor—Proudman theorem. Two-dimensionalization inhibits
cascade (no vortex stretching) and diminishes production leading to viscous decay
of the velocity field at all scales. In the present case, on the other hand, turbulence
is isotropic at large frequencies of shear variation. The shear varies too rapidly to
induce anisotropy and produce kinetic energy. We anticipate that at high frequencies,
turbulence subject to rapidly varying shear will be more like decaying isotropic
turbulence as net production will be insignificant. To establish that this is indeed the
case, we will now compare the w/S,... = 10 case with decaying isotropic turbulence.
In the decaying isotropic turbulence simulation, all the initial conditions are the
same as for homogeneous shear flow, except that the wall boundary condition is
replaced by the periodic boundary condition and there is no mean shear in the flow.
Figure 24 shows the evolution of k& and & for homogeneous shear and isotropic
decaying cases. For consistency, time is normalized with S, although there is no
shear in isotropic decay turbulence. In the homogeneous shear case, at the initial
stage, k decays a little slower than in the isotropic decaying case; but overall, the
decay rates are almost same for both cases. A similar examination of the dissipation
rate demonstrates that the evolutions in the two cases are almost indistinguishable.
The standard power-law decay is recovered in both cases. It must be pointed out that
there are about 15 shear cycles in the period over which the comparison is made.
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FiGURE 24. The evolutions of k and ¢ in isotropic decaying turbulence and homogeneous
shear turbulence with w/Sy.x = 10.
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FIGURE 25. Evolution of the anisotropy tensor in ———, isotropic decaying turbulence

and —, homogeneous shear turbulence with w/S,;,x = 10.

Next we compare the evolution of anisotropy in the two cases in figure 25. The
small level of anisotropy seen in the initial condition is due to finite statistical
sample size. The time-development of the diagonal anisotropies in the decaying and
high-frequency forcing cases are similar, with the latter exhibiting small-amplitude
oscillations about the former. With regard to by,, the difference between the two cases
is discernible. The negative bias of by, in the forced case has already been explained
above. The most significant features are: the cycle-averaged by, in the forced case
is quite different from the by, in the isotropic decaying case; and the amplitude of
oscillation is sizeable. Despite the large amplitude of the b, variation, the production
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FiGure 26. RDT evolution of k for w/Sp.x =0.25, 0.5 and 1.0.

is very small because stress and strain are out of phase by m/2. Thus, the diagonal
anisotropies, kinetic energy and dissipation are not very different from those in the
unforced decaying case.

In summary, the limiting turbulence behaviour in homogeneous shear flow in
a rotating reference frame is dictated by the Taylor-Proudman theorem and is
characterized by two-dimensional fluctuations. In the periodic shear case, the limiting
behaviour is characterized by statistically isotropic fluctuations and turbulence decays
as in unforced case.

6. DNS vs. RDT and RANS models

In this section, we compare the performances of RDT and second momentum
closure models against DNS results.

6.1. Results of RDT

Rapid distortion theory is a well-developed linear analysis tool for investigating the
Navier—Stokes equations (Pope 2000). We perform RDT analysis of the periodic shear
flow using the code of Girimaji, Jeong & Poroseva (2003). In the RDT limit, the
nonlinear terms are smaller compared with the linear shear term and are neglected.
The effect of three different forcing frequencies (w/S,.x=0.25,0.5 and 1.0) on
turbulence evolution is studied. We find that the kinetic energy evolution is periodic
in all cases as shown in figure 26, with minima at the initial value. The amplitude
of kinetic energy variation decreases with increasing frequency. All Reynolds stress
anisotropies also exhibit periodic behaviour, as can be seen from figure 27. Most
notably, turbulence producing shear anisotropy (by;) is periodic, with maxima at zero.
Turbulence production (P) exhibits periodic behaviour about zero (figure 28) in all
cases. Negative values of production are encountered just as much as positive values.
Thus, the net production over any single period is zero, consistent with the behaviour
of by, and k. Most importantly, turbulence evolution is qualitatively the same for all
forcing frequencies: it is purely periodic. Thus, RDT does not capture the different
turbulence responses for different forcing frequencies.

It is somewhat surprising that the inviscid RDT results fail to capture, even qualit-
atively, the important features of the DNS results. On the other hand, in homogeneous
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Figure 28. RDT production of k for w/Sp. =0.25, 0.5 and 1.0.

shear flow in a rotating reference frame, inviscid RDT replicates all of the main
features of turbulence physics quite well. The inclusion of viscous effects alone (viscous
RDT) cannot be expected to result in better agreement with DNS in the present
case. Viscosity, in the rapid distortion limit, simply causes an exponential decay of the
amplitude of fluctuation of each wavenumber. The decay exponent is proportional to
the square of the magnitude of the wavenumber and the value of viscosity. The viscous
term cannot cause an increase in the amplitude of fluctuation of any wavenumber.
Thus, viscous RDT cannot possibly capture the turbulence growth observed at the
low forcing frequencies. The cause for RDT failure must lie elsewhere.

We propose that the primary reason for the disparity between RDT and DNS is
the time-reversibility of the mean-velocity gradient. It is well known that all inviscid
turbulence process are fully time-reversible (Pope 2000): the inertial and pressure
terms in the Navier—Stokes equations are invariant to a change in sign of time and
total velocity. The RDT equations (equation (3.30)) have further time-reversibility
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properties. Consider the following transformation:
. U’ aU;
= —t; () =— (). (6.1)
a)Cj 8)(]‘

The RDT equations for the fluctuating field in terms of the transformed quantities
can be written as

dﬁj A BU,* KK
L= ——(t) 8 —2-5- ). 6.2
= i) (-2 (62)
Similarly, the wavenumber evolution equation is

dK[ aU;

Thus, the RDT equations are invariant to changing the sign of time and mean
velocity simultaneously. As a result, reversing the sign of the mean velocity gradient
has the effect of reversing time. The Navier—Stokes equations are not invariant to
the transformation given in (6.1) owing to the presence of terms nonlinear in the
fluctuations.

Consider one cycle of sinusoidal variation of shear with time period Tj, in the
interval, it is easy to see that

aU; (T, au; (T Ty
— 4t =— — —t for t < —. 6.4
8x_,-<2+) ax,-<2 ) or 2 (64)

This feature of the mean velocity along with the time reversibility of RDT equations
leads to the following:

T, T, To/240 qy,
u,-<°+t>—u,»<°—t>=/ e
2 2 Toja— At

To/2 . To/2+t )
— / dui 4y 4 / dui 4 o, (6.5)
12— dif 2 df

The two terms in the right-hand side of the last equality are equal in magnitude, but
opposite in sign. Thus, because of the reversibility property of the governing equations,
the fluctuations that build up during the positive part of the shear cycle exactly
unravel during the negative part of the shear cycle. At the end of each complete shear
cycle, the turbulence velocity field must inevitably return to the initial condition.
Thus, the RDT field is periodic. In the DNS, the presence of the nonlinear terms
breaks the invariance leading to a different behaviour. A secondary reason for the
disagreement between DNS and RDT is that in (temporal) proximity of zero shear,
the Navier—Stokes equation cannot be linearized about the mean shear field.

In contrast to RDT, the second-moment closure RANS equations include closure
models for the nonlinear and viscous effects. As the nonlinear effects are of crucial
importance in this flow, the RANS model may be expected to perform better than
RDT.

0

6.2. RANS model predictions

We now compare the DNS results against the predictions of Reynolds-averaged
Navier—-Stokes (RANS) models. Much of the observed behaviour in periodic shear
turbulence can be attributed to the phase difference between the applied shear and
Reynolds stress. Therefore, any one- or two-equation turbulence models that invoke
the Boussinesq assumption will be invalid for periodic shear turbulence. Further,
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FiGure 30. Evolution of k obtained from RANS with the SSG model for different
frequencies.

any nonlinear constitutive relationship that represents stress as a function of current
strain will also be invalid. The so-called structural equilibrium limit, at which the
differential Reynolds-stress model can be simplified to an algebraic Reynolds-stress
closure, is not achieved in this flow. Thus, the seven-equation differential Reynolds-
stress closure is the lowest level at which this flow can be reasonably modeled. We
investigate two differential Reynolds-stress closure models in this study: the LRR
model from Launder, Reece & Rodi (1975); and the SSG model from Speziale,
Sarkar & Gatski (1991).

In model simulations, the initial values of k and ¢ are assigned to match the initial
values in the DNS. The flow is initially isotropic. The magnitude and frequency of §
are the same as those in the DNS.

Figures 29 and 30 show the evolutions of k& obtained from LRR and SSG models
for w/Syax =0.125, 0.25, 0.50, 0.75 and 1.0. Since the phase lag ¢ between stress and
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FIGURE 31. Comparison of phase lag ¢ obtained from DNS and RANS with the SSG
and LRR models.

shear is crucial in predicting the net production of turbulence, the ¢ computed by
the models are compared with DNS results in figure 31. Both RANS models predict
turbulence growth for w/S,.. =0.125 and 0.25 and decay for all other frequencies.
Most notably, the models predict that turbulence decays for w/S,.. =0.5, in contrast
to the DNS result of slow growth. For the low-frequency cases, the SSG model is
slightly better than LRR in predicting the evolution of k. The latter predicts a more
rapid growth of k than seen in DNS results. For high-frequency cases, both models are
equally inaccurate. The stress—strain phase-lags predicted by models are consistently
lower (figure 31) than those by DNS. This explains why the models predict lower
critical frequency value than DNS.

Next, we present the results of the diagonal anisotropy tensor obtained from the
models in figure 32 for w/S,,.x = 0.5 and 1.0 cases. These predictions must be compared
with DNS results in figures 17 and 19. Models predict periodic variation of normal
anisotropy. The frequency of normal anisotropy is twice that of applied mean shear.
For w/S,.x =0.5, by; predicted by SSG agrees quite well with DNS, but the magnitude
of by, is lower than that of DNS. The LRR model predicts much smaller magnitudes
for both by and by,. For w/S,..x =1.0, both models overpredict the magnitudes of
by and by,. The SSG model has a relatively larger error than the LRR model. In the
decay case, the normal anisotropy cycle-mean does not appear to vanish, in contrast
to the behaviour in DNS.

In summary, both models predict lower values of critical frequency than that ob-
tained by DNS. The SSG model behaves better at low forcing frequency in predicting
k and normal anisotropy, while LRR is better at high frequency in predicting normal
anisotropy.

6.3. Modelling implications

In the case of homogeneous shear flow in rotating reference frame, linear analysis
captures much of the turbulence physics, as indicated earlier. Thus, the linear processes
dominate the flows physics. The RANS modelling implication of this observation is
simple. Accurate modelling of the rapid pressure—strain redistribution which is the
only unclosed linear term is crucial to capturing shear flow physics in rotating
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FiGure 32. RANS predictions of by; and by, at two frequencies. Results to be compared
with DNS data in figures 17 and 19.

reference frames. Indeed, the linear analysis can provide guidance for developing the
closure model.

In the case of periodically sheared turbulence considered here, RDT does not
capture the essential flow physics. The asymptotic behaviour in this case is dictated by
the nonlinear processes. Thus, the onus falls on the slow pressure—strain distribution
and dissipation closure models to capture the observed behaviour. In the RANS
comparisons above, the rapid pressure—strain closure represents the biggest difference
between the LRR and SSG models. The closures for nonlinear terms are similar. It
is for this reason that both models predict qualitatively similar behaviour.

In general, the closure techniques for the rapid pressure—strain redistribution term
are more sophisticated as they draw heavily from RDT (for function) and representa-
tion theory (for form). The nonlinear process closures are less formally derived and
based primarily on return-to-isotropy and other empirical arguments. The present
flow poses substantial challenges for closure modelling of nonlinear processes.

7. Conclusions

To understand the effects of unsteady forcing on turbulence, we perform DNS
of homogeneous periodic-shear flows. Lattice Boltzmann equations are solved in a
computational domain which is bounded by frictionless walls in the y-direction and
is periodic in the x- and z-directions. Body force is applied to generate the desired
periodic shear:

S = Spax Sin(wt)~

The main findings are as follows.
(a) At low forcing frequencies, kinetic energy grows. At high frequencies, k decays.
The critical frequency at which the asymptotic behaviour changes from growth to
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decay is found to be around w/S,.. =0.5. At very high frequency (w/S,..x = 10), the
periodically forced turbulence behaves similarly to decaying isotropic turbulence.

(b) The observed behaviour can be explained in terms of the stress—strain phase-lag
¢ at different forcing frequencies. The phase-lag goes from © at low frequencies to
n/2 at high frequencies. Phase-lag of m/2 corresponds to no net production. Thus,
the production decreases progressively as forcing frequency increases. When the level
of production falls below dissipation, turbulence cannot be sustained.

(¢) Normal anisotropy oscillates about non-zero asymptotic values in growth cases.
In decay cases, the cycle-average of anisotropy appears to vanish at long time.

(d) RDT does not capture the frequency-dependence of the asymptotic behaviour.
It predicts periodic k-behaviour at all forcing frequencies.

(e) Second moment closures do capture the asymptotic frequency dependence,
although the predicted critical value is smaller than that observed in DNS.

(f) Comparison of RDT and DNS results appears to indicate that the onus is
on the closure models of the nonlinear terms to produce the observed asymptotic
frequency dependence.

This work was supported by AFOSR under Grant number FA9550-05-1-0177.
Project monitor: Dr John Schmisseur.
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